On Some Methods for Solution of Linear Diophantine Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Methods for Solving Linear Diophantine Equations

We present some recent results from our research on methods for finding the minimal solutions to linear Diophantine equations over the naturals. We give an overview of a family of methods we developed and describe two of them, called Slopes algorithm and Rectangles algorithm. From empirical evidence obtained by directly comparing our methods with others, and which is partly presented here, we a...

متن کامل

On Some Diophantine Equations (i)

In this paper we study the equation m−n = py,where p is a prime natural number, p≥ 3. Using the above result, we study the equations x + 6pxy + py = z and the equations ck(x 4 + 6pxy + py) + 4pdk(x y + pxy) = z, where the prime number p ∈ {3, 7, 11, 19} and (ck, dk) is a solution of the Pell equation, either of the form c −pd = 1 or of the form c − pd = −1. I. Preliminaries. We recall some nece...

متن کامل

On Some Diophantine Equations (iii)

In this paper we study the Diophantine equations ck(f +42fg+49g) + 28dk(f g + 7fg) = m, where (ck, dk) are solutions of the Pell equation c 2−7d2= 1.

متن کامل

On Some Diophantine Equations (ii)

In [7] we have studied the equation m − n = py, where p is a prime natural number p ≥ 3. Using the above result, in this paper, we study the equations ck(x 4 + 6px y +py) + 4pdk(x y + pxy) = 32z with p ∈ {5, 13, 29, 37}, where (ck, dk) is a solution of the Pell equation ∣∣c2 − pd2∣∣ = 1.

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Universal Journal of Mathematics and Applications

سال: 2020

ISSN: 2619-9653

DOI: 10.32323/ujma.641744